Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770427

RESUMO

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
2.
Brief Bioinform ; 22(2): 701-713, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33279954

RESUMO

The stratification of patients at risk of progression of COVID-19 and their molecular characterization is of extreme importance to optimize treatment and to identify therapeutic options. The bioinformatics community has responded to the outbreak emergency with a set of tools and resource to identify biomarkers and drug targets that we review here. Starting from a consolidated corpus of 27 570 papers, we adopt latent Dirichlet analysis to extract relevant topics and select those associated with computational methods for biomarker identification and drug repurposing. The selected topics span from machine learning and artificial intelligence for disease characterization to vaccine development and to therapeutic target identification. Although the way to go for the ultimate defeat of the pandemic is still long, the amount of knowledge, data and tools generated so far constitutes an unprecedented example of global cooperation to this threat.


Assuntos
Biomarcadores/sangue , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos , Antivirais/uso terapêutico , COVID-19/sangue , COVID-19/virologia , Reposicionamento de Medicamentos/métodos , Humanos , Aprendizado de Máquina , SARS-CoV-2/isolamento & purificação
3.
Genome Biol ; 21(1): 216, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847614

RESUMO

BACKGROUND: Glioblastoma (GBM) is a complex disease with extensive molecular and transcriptional heterogeneity. GBM can be subcategorized into four distinct subtypes; tumors that shift towards the mesenchymal phenotype upon recurrence are generally associated with treatment resistance, unfavorable prognosis, and the infiltration of pro-tumorigenic macrophages. RESULTS: We explore the transcriptional regulatory networks of mesenchymal-associated tumor-associated macrophages (MA-TAMs), which drive the malignant phenotypic state of GBM, and identify macrophage receptor with collagenous structure (MARCO) as the most highly differentially expressed gene. MARCOhigh TAMs induce a phenotypic shift towards mesenchymal cellular state of glioma stem cells, promoting both invasive and proliferative activities, as well as therapeutic resistance to irradiation. MARCOhigh TAMs also significantly accelerate tumor engraftment and growth in vivo. Moreover, both MA-TAM master regulators and their target genes are significantly correlated with poor clinical outcomes and are often associated with genomic aberrations in neurofibromin 1 (NF1) and phosphoinositide 3-kinases/mammalian target of rapamycin/Akt pathway (PI3K-mTOR-AKT)-related genes. We further demonstrate the origination of MA-TAMs from peripheral blood, as well as their potential association with tumor-induced polarization states and immunosuppressive environments. CONCLUSIONS: Collectively, our study characterizes the global transcriptional profile of TAMs driving mesenchymal GBM pathogenesis, providing potential therapeutic targets for improving the effectiveness of GBM immunotherapy.


Assuntos
Redes Reguladoras de Genes , Glioblastoma/genética , Macrófagos Associados a Tumor , Animais , Carcinogênese , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/genética , Humanos , Imunoterapia , Macrófagos/metabolismo , Camundongos , Neurofibromina 1/genética , Fenótipo , Prognóstico , Células-Tronco , Transcriptoma , Microambiente Tumoral
4.
Neurooncol Adv ; 2(1): vdaa078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32743548

RESUMO

BACKGROUND: Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. METHODS: Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. RESULTS: Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. CONCLUSIONS: Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.

5.
Glia ; 68(12): 2486-2502, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621641

RESUMO

Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor cells, while also altering the tumor microenvironment. Tumor cells with stem-like properties preferentially survive radiation and give rise to glioma recurrence. Various techniques for enriching and quantifying cells with stem-like properties have been used, including the fluorescence activated cell sorting (FACS)-based side population (SP) assay, which is a functional assay that enriches for stem-like tumor cells. In these analyses, mouse models of glioma have been used to understand the biology of this disease and therapeutic responses, including the radiation response. We present combined SP analysis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to show a time course of cellular response to radiation. We identify and characterize two distinct tumor cell populations that are inherently radioresistant and also distinct effects of radiation on immune cell populations within the tumor microenvironment.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco , Animais , Neoplasias Encefálicas/radioterapia , Camundongos , Células-Tronco Neoplásicas , Análise de Célula Única , Microambiente Tumoral
6.
Commun Biol ; 2: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044160

RESUMO

Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of tumor-specific mutant peptides (neoantigens) correlates with better survival and response to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and infectious disease-derived immune epitopes and apply a neoantigen fitness model for identifying high-quality neoantigens in a human pan-glioma dataset. We find that the neoantigen quality fitness model stratifies GBM patients with more favorable clinical outcome and, together with CD8+ T lymphocytes tumor infiltration, identifies a GBM subgroup with the longest survival, which displays distinct genomic and transcriptomic features. Conversely, neither tumor neoantigen burden from a quantitative model nor the isolated enrichment of CD8+ T lymphocytes were able to predict survival of GBM patients. This approach may guide optimal stratification of GBM patients for maximum response to immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Neoplasias Encefálicas/mortalidade , Estudos de Coortes , Epitopos/genética , Epitopos/imunologia , Ontologia Genética , Glioblastoma/mortalidade , Antígenos HLA/imunologia , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Modelos Imunológicos , Oligopeptídeos/imunologia , Prognóstico , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
7.
Nat Med ; 25(1): 176-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30531922

RESUMO

Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.


Assuntos
Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Glioma/complicações , Glioma/genética , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Adolescente , Adulto , Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Glioma/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurofibromina 1/genética , Reprodutibilidade dos Testes , Linfócitos T/imunologia , Transcriptoma/genética , Proteína Nuclear Ligada ao X/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...